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1. Introduction

Most of the reports on experience with software reliability models have made use of data

from actual software development efforts [4, 7, 10]. These reports have been useful in helping

practitioners determine the behavior the models will exhibit under actual test and operational

conditions. However, the failure data from actual projects is influenced by process and product

characteristics that are not taken into account in most models. The shape of a failure intensity

curve may be influenced by the complexity of the software under test, the number of testers

available, the skill level  of the testing staff, and the type of testing being performed (e.g.

functional testing, path testing, data coverage testing). These data are also subject to uncertainty

and distortion. The complexity of real world failure data may obscure properties of software

reliability models that might  be revealed by executing the models on simpler data sets, We have

created sets of interfailure times by generating sequences according to the distributions for two

of the more-widely used software reliability models, and have executed six models on each data

set. The results of this activity have suggested ways in which existing methods might be most

effectively used in choosing the most appropriate model. In the remaining sections we discuss

the following items:

1. The way in which the data sets were created, and the way in which the models

were executed using these data sets.

2. The results of the experiment.

3. A discussion of the results, and recommendations for further work.
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11. Method

In creating the data sets, we generated 40 sequences of interfailure times according to the

method discussed in Section 12.3 of [9]. The first twenty sequences were created by drawing

random samples from an exponential distribution, while the remaining twenty were created to

simulate sequences of interfailure times for a logarithmic Nonhomogeneous Poisson Process. To

generate data simulating a logarithmic Nonhomogeneous Poisson Process, the following was done

for each sequence:

1. Generate a sequence of random numbers, zi> uniformly distributed in the interval (O, 1).

2. For each zij compute an exponential random value Ui = -ln (1 - Zi). This represents

i’th failure interval for a stationa~  Poisson process with a rate of 1.

3. Set vi= ~~ul.  This represents the i’th failure time for the Poisson process.

4. Convert the failure

logarithmic Poisson

time for the stationary Poisson

process, Wi:

process to the failure time for

the

the

W i 

= p-’ (vi)

where u is the mean value function for the logarithmic Poisson model:

p(z) = (1/@)ln(&&  + 1)

& = initial  failure intensity

@ = failure intensity decay parameter

~ = total elapsed execution time

5 Convert the logarithmic Poisson failure times to failure intervals by taking the differences. .

between successive values of Wti

A similar process was used to generate the sequences simulating data from an exponential

Nonhomogeneous Poisson Process.
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Six of the better-known software reliability models were then run on the sequences using

maximum likelihood parameter estimation. The six models and their hazard rates or mean value

functions are given below. Detailed descriptions may be found in [9] and [11].

1. Geometric Model - hazard rate z(t) for time “t” between the i-1 ‘th and the i’th failure is

z@i-], where ~ is the initial hazard rate, and @ is the decay constant.

2. Jelinski-Morrmda  Model - hazard rate is :

z ( t )  =  K(: - ect)
T

where z(~) represents the hazard rate at failure time z, K is the proportionality constant,

ET is the number of errors initially in the program, IT is the number of machine

instructions in the program, and &c is the cumulative number of failures removed in the

interval [0, ~].

3. J.ittlewood-Verrall Model (quadratic form) - the hazard rate for the quadratic form is:

aZ(ti) = ~i + PO + ~1i2

where CX, j30, and ~1 are parameters of the model, i represents the failure number, and ti

is the time between the i-1 ‘th and i’th failures.

4. Muss Basic Model - the mean value function for this model is:

p(t) =Vo(l -exp(--$ t))

where ~(t) represents the mean number of failures at time t, & represents the initial

failure intensity, and VO represents the estimated total number of failures that would be

observed over an unlimited amount of execution time.

5. Muss-Okumoto Model - the mean value function for this model was given at the start

of this section.

6. Nonhomogeneous Poisson Process (NHPP) Model - the mean value function for this

model is given by:
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p ( t )  =a(l  -exp(-bt))

. . .

where ~(t) represents the mean number of failures at time t, a is the estimated total

number of failures that would be observed over an unlimited amount of execution time,

and b is the intensity decay parameter.

The tool CASRE [6] was used to run the models. CASRE is a software reliability

modeling tool implemented in a Microsoft Windows environment. The core modeling capabilities

of this tool are the libraries originally implemented for version 5 of the software reliability

modeling tool SMERFS [1 2]. The object code for these libraries was linked into the executable

CASRE module. The command interface is a set of pull-down menus that make it easy to

navigate through the functional areas of the tool. Input data and model results are displayed both

as text and as high-resolution graphics that were designed to be easy for non-specialists to

interpret. Model results can be written to a text file which can be brought into a spreadsheet,

database, or statistical analysis package for further analysis.

An array of estimated Mean Times To Failure (MTTF) was then generated, using the parameter

estimates obtained after processing the last observation in each sequence. The Kolmogorov-

Smirnov goodness of fit test was used to determine the goodness of fit of the model results to

the input data set. To evaluate model applicability, the prequential  likelihood, model bias, and

bias trend were computed [2]. A brief  description of these three criteria is given below: ,

1.

2.

Prequential Likelihood - although similar in form to the likelihood function used for

maximum likelihood estimation, this function is not used to estimate model parameters.

Rather, the parameter estimates and actual observed failure times are used in this function

to compute a value that can be used to determine how much more likely it is that one

model will produce accurate estimates than another model. This likelihood is given by

the value of the ratio of the prequential  likelihoods for the two models being compared.

Model Bias - this measure uses the estimated probability of failure for each failure

interval to determine the extent to which a model introduces bias into its estimates. If a
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model is biased, it can be optimistically biased (estimates of MITFs are higher than what

is actually observed), or it can be pessimistically biased. The cumulative distribution

function (calf) for the estimated failure probabilities is compared to the cdf for iid random

variables in the interval (0,1) using the Kolmogorov-Smirnov (KS) test. The KS test

statistic reveals the extent of model bias.

3. Model Bias Trend - this measure uses the estimated probability of failure for each failure

interval to determine whether model bias changes over time. A model may be

optimistically biased during the early stages of testing, while it may become

pessimistically biased during the later stages. The analysis is similar to that for model

bias, except that the estimated failure probabilities are transformed in a way that preserves

temporal information.

The models were then ranked with respect to all four criteria. Model noise was not included in

the criteria because, unlike the other criteria, it provides no absolute indicator of how well a

model  performs, nor does it necessarily measure how well one model performs compared with

other models.

111. Results

The results of this experiment are summarized in Tables 1-12 below. The first two tables

summarize the performance of all models across the input sequences, Table 1 summarizes the

performance of all models across the 20 sequences drawn from an exponential distribution, while

Table 2 summarizes the performance of all models across the 20 sequences drawn from the

logarithmic Poisson distribution. Tables 1 and 2 are interpreted as follows.

1. Even-numbered columns rank the model across all inputs of a specific type with

respect to prequential  likelihood, model bias, model trend, and the Kolmogorov-

Smirnov goodness-of-fit test. Column 1 gives the mean overall rank of the model,

which is computed by equally weighting the individual ranks according to

prequential likelihood, model bias, model bias trend, and goodness of fit (KS test).
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Model overall Std Preqnt’1 Std Rim Std Bim Std KS Std

Name Rank DC-v I.ikellhood Dev Rank Dev Trend Dev Rank Dev

Rank Rank

Geometric 1.950 0.88704 1.550 0.60481 1.750 0.44426 2.4S0 0.68633 2.250 0.78640

Jelinski- 5.450 0.99868 5.500 0.88852 5.500 0.88852 5.300 1.38031 5.250 1.33278

Moranda

1.ittlewood- 2.700 1.08094 3.100 0.71818 3.150 0.67082 2.100 1.44732 1.850 1.34849

Vmall

Musa Basic 5.900 0.44721 5.950 0.22361 5.950 0.22361 5.900 0.44721 5.950 0.22361

Muss 1.050 0.22361 1,500 0.51299 1.250 0.44426 1.800 0.61559 2.200 0.69585

Gkumoto

N1[PP 5.900 0.44721 5.900 0.44721 5.900 0.44721 5.950 0.22361 6.000 0.00000

Table 2- Summary of model rankings - data representative of logarithmic NHPP model

This information is shown in Figures 1 and 2 below. These figures also show the mean ranks

according to prequential likelihood, model bias, model bias trend, and goodness of fit,

EXPWW*  D*  - Mean  RwIIckI#8  of Mod.ls

“’W’-WLWE

Figure 1 - Mean Model Rankings - Exponential NHPP Inputs
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Loomltiunk  Data. Mew!  Ranklnw  of Model-

$3 jp M.&l  n-.
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Figure 2- Mean Model Rankings - Logarithmic NHPP Inputs

Tables 3 and 4 summarize the ranking frequencies for each model for a particular input

type. For each model that was run using the 20 sets of data drawn from an exponential

distribution, Table 3 gives the number of times that model was assigned a particular rank. Table

4 is interpreted the same way, except that the input data to the models was the 20 sequences

intended to be representative of a logarithmic Nonhomogeneous Poisson Process.

Model Name Times

Rnnked

First
.

Oeomelric 2

Jelinski-Mormda 7

Littlewood-Verrall 2

Muss Basic
I

8

Muss okUillOtO
1 ’

NIIPP I 4
=-

Tinsea

Ranked

Second

1

4

1

6

2

2

Times

Ranked

Third

4

4

6

4

5

2

Times Times Times

Ranked Ranked Ranked

FOU  rth Fifth SIsth

81411
1

I
o

I
4

3 I 3 I 5

2 1010

+--l-+
Table 3- Overall ranking frequency - exponential NHPP inputs
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Model Name Times Thnea Times Tlmea ‘ilmea Times

Ranked Ranked Ranked Ranked Ranked Ranked

m-d Seeond Third Fon rth Fillh six th

Oeomctric 8 5 7 0 0 0

Jelinski-Morsnda o 0 1 4 0 15

LiUlewood-Vefiall 2 6 10 1 0 1

Muss Basic o 0 0 1 0 19

Muss Okumoto 19 1 0 0 0 0

NIIPP o 0 0 1 0 19

J

Table 4- Overall ranking frequency - data representative of logarithmic NHPP model

We found that traditional goodness-of-fit tests (in this case, the Kolmogorov-Smirnov test)

do not seem to be the best way of identifying the most appropriate model. For instance, we

would expect that the Jelinski-Moranda, the Muss Basic, of the NHPP model would perform best

on the data sequences generated by drawing random samples from an exponential distribution.

However, Table 5 below indicates that collectively, these models do not rank first according to

this measure as often as the’ Geometric, the Littlewood-Verrall,  and the Musa-Okumoto.

—

Model Name Tinm Thnes Times Tlmea Times Thnea

Ranked Ranked Uanked Ranked Ranked Ranked

First Second Third Fourlh Fifth sixth

Oeometric 6 2 3 4 2 3

Jelinski-Morsnda 4 4 5 2 3 2

Littlewood-Verrall 3 3 4 3 3 4

Muss Basic 4 5 3 5 2 1

Muss Okumoto 2 3 5 5 4 1

NliPP 2 2 1 4 2 9

Table 5- KS Test ranking frequency - exponential NHPP inputs
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We see the same phenomenon in the data sets created to simulate a logarithmic Nonhomogeneous

Poisson process. In Table  6 below, note that the Littlewood-Verrall model ranks first 12 times,

while the Muss-Okumoto model, which we would expect to perform the best, ranks first only

three times. Figures 3 and 4 show this information in the form of a 3-D plot.

Model Name

Oeonlelric

Jelinski-Moranda

I,ittlewood-Verrall

Muss Basic

Muaa Okumoto

NIIPP

Times Tlmen Thnen Times Times

Ranked Ranked Ranked Ranked Ranked

mat I Second I Third I Fourth I Finh

4 17191010
1 0 0 5 0

12 3 3 1 0

0 0 0 0 1

3I1OI7IO]O

010101°10

Times

Ranked

sixth

o

14

1

19

0

20

Table 6- KS Test ranking frequency - data representative

EXPWHtid  Dsts  - KS Modd  ltmklrw

of logarithmic NHPP model

Figure 3- KS Test Model Ranking - Exponential NHPP Inputs
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LemrStwnlc  bt~.  KS R8nk

WFP(

., .-
,,

Figure 4- KS Test Model Ranking - Logarithmic NHPP Inputs

Looking at the other methods of

much closer to what we might expect.

ranking the models, we find that they provide results

Specifically, the Jelinski-Moranda, Muss Basic, and

NHPP n~odels  are favored when using the sequences drawn from an exponential distribution as

input, while the Muss-Okumoto model is favored when using data simulating a logarithmic

Nonhomogeneous Poisson Process as input. This is shown in tables 7-12, below.

Model Name Thnea Times Tlrnes Times Times Times

Rnnked Rnnked Rsnked Ranked Rsnked Rsnked

First Second Third Fourih Fitth sixth

Oeometric 1 3 0 8 8 0
—

Jelinski-Moranda 11 1 4 1 0 3
—.

i.ittlewood-Verrall 4 1 6 0 1 8

Muss Uasic 4 11 i 3 1 0
.-

!bfuss Okumoto o 1 5 8 6 0

NIiPP 3 4 0 3 0 10

—

Table 7- Prequential Likelihood ranking frequency - exponential NHPP inputs
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Model Name Times Times Times Times Iimen Times

Ranked Ranked Rnnked Ranked Ranked Ranked

Fhat Second Third Fourth F’itlh sixth

Geometric 2 1 1 7 9 0

Jelinski-Morsnda 10 2 4 2 0 2

Littlewood-Verrail 1 1 8 3 1 6

Muss Bssic 3 11 4 2 0 0

Muss Okumoto 1 1 1 6 7 4

NIIPP 5 3 1 1 1 9

4

Table 8- Model Bias ranking frequency - exponential NHPP inputs

Model Name Times Times Times Times Ttmea Ttmes

Ranked Ranked Rmnked Rnnked Ranked Rnnked

First Second Third Foutih FllUI Sixth

Geometric 1 3 1 8 7 0

Jelinski-Mormda 2 7 6 1 2 2

Littiewood-Verrall 2 0 1 1 7 9
—

Muss Basic 12 3 2 2 0 1

Muss Okumoto 2 3 9 6 0 0

NIWP 4 2 2 2 1 9

—

Table 9- Model Bias Trend ranking frequency - exponential NHPP inputs
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Model Name I Tlmea I Tlrnea I Times I Times
I

Times I Times

Ranked Ranked Ranked Ranked Ranked Ranked

k-hat Second Third Fourth Flab sixth

Geometric I 2 I ‘-I I 11 I o I o I o

Jclinski-Moranda 1 0 1 3 0 15

l.ittlewood-Vernxll 11 1 5 2 0 1
1

Muss Basic o 0 0 1 0 19

Muss Okumoto 6 12 2 0 0 0

N1[PP
I

o I o
I

o
I

o
I

1
I

19

Table 12- Model Bias Trend ranking frequency - simulated logarithmic NHPP data

Iv. Discussion

Even though the data sets used as inputs to the models were created to favor either the

exponential or logarithmic NHPP models, we have seen that in a few cases, other models were

favored over the ones that were expected to be chosen. Along with earlier work in this area [2],

this demonstrates that selection of the most appropriate software reliability model for a testing

effort must continue after testing has started and model application has begun. Indiscriminate

application of statistical methods can result  in not choosing the most appropriate model on which

to base reliability forecasts. Although a one-step ranking of the models with respect to

prequential  likelihood, bias, bias trend, and goodness of fit can provide a good idea of the most

appropriate model in many cases, there may still be times for which a less appropriate model

might be chosen. Part of the problem seems to be that the goodness-of-fit test is not sensitive

enough to make find distinctions among models. It is perhaps better suited to serve as a

preliminary screening, rejecting models that do not fit to a pre-specified significance level. For

those models that do fit the data to the specified significance level, successive application of the

other three methods listed above can provide a better idea of which model is more appropriate

to the data being analyzed. We recommend following the steps below to choose the most

appropriate model.
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1. Apply a goodness of fit test to determine if the model results fit the input data to a

specified significance level.

2. If more than one set of model results are a good fit to the data:

a. Choose the most appropriate model(s) based on the prequential  likelihood.

b. In the event of a tie, use the model bias, then model bias trend to break the tie.

c. Use techniques, such as forming linear combinations of model results [5, 6, 7] or

model recalibration [3, 5], to increase the accuracy of the model predictions.

Reports on the use of these methods indicate that they can be used to significantly

increase the models’ predictive accuracy.

3. If only one model provides a good fit to the data, choose that model.

4. If no models provide a good fit to the data:

a. Choose the most appropriate model(s) based on the prequential  likelihood.

b. Use the linear combination and model recalibration techniques mentioned above

to increase the accuracy of model predictions.

c. Apply the goodness of fit test to the adjusted model results to identifi  those that

are a good fit to the data.

v. Conclusion

We have seen that selection of the most appropriate software reliability model is a process

that continues throughout the testing phase. Even if the characteristics of the testing process are

well-known for a particular development effort, this is no guarantee that the model whose

assumptions appear to best match these characteristics will be the most appropriate model.

Finally, a staged application of the model applicability criteria previously discussed appears to

be the best way of selecting the most appropriate model. Reliance on a single measure to choose

the most appropriate model can lead to making an incorrect choice. Using a weighted ranking

scheme involving several criteria can reduce the chances of making an incorrect selection, but

the risk of choosing an inappropriate model can still be greater than using the multiple

opportunities of a staged ranking process to eliminate less appropriate choices.
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Because of time limitations, we were unable to investigate model recalibration and linear

combination techniques in this experiment, although we are planning to do so in the future. We

are also planning on examining the behavior of the models with respect to other distributions of

interfailure times that might be encountered. Further work on identifying the most appropriate

model for a development effort is needed. Although prequential  likelihood and model bias

computation have proven to be useful methods, other approaches, such as the Akaike information

criterion [1], should be further investigated.

In addition, more work is needed in relating product and development process

characteristics to appropriate models. Although it seems to be the case that there is no way to

determine with certainty which model is the most appropriate for a particular effort [2], there may

be ways of using measures of the development process and the product characteristics to guide

the selection of models that are likely to produce valid predictions. Alternatively, these measures

may be incorporated into the model directly so as to more accurately describe the fault detection

and removal process [8, 10].
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